
International Journal of Scientific & Engineering Research, Volume 3, Issue 1, January-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Applied Software Project Management
Software Project Planning Estimation Techniques

T. Rajani Devi

Abstract - Most critical activities in the modern software development process is without a realistic and objective software project
plan, the software development process cannot be managed in an effective way. The purpose of project planning is to identify
the scope of the project, estimate the work involved, and create a project schedule. Project planning begins with requirements
that define the software to be developed. The project plan is then developed to describe the tasks that will lead to completion.
software and project estimation techniques existing in industry and literature, it has strengths and weaknesses. Usage,
popularity and applicability of such techniques are elaborated. In order to improve estimation accuracy, such knowledge is
essential. Many estimation techniques, models, methodologies exists and applicable in different categories of projects. None of
them gives 100% accuracy but proper use of them makes estimation process smoother and easier. Organizations should
automate estimation procedures, customize available tools and calibrate estimation approaches as per their requirements.

Key Words- Black art, business domain, fair estimate, granularity, magnitude, magnitude estimate, quibble, rough estimate, starved, weighing factors.

——————————  ——————————

1 Introduction

OFTWARE project management begins with a set of
activities that are collectively called project planning.
Before the project can begin, the manager and the

software team must estimate the work to be done, the
resources that will be required, and the time that will elapse
from start to finish. Whenever estimates are made, we look
into the future and accept some degree of uncertainty as a
matter of course. Software project planning actually
encompasses several activities planning involves
estimation—the attempt to determine how much money,
how much effort, how many resources, and how much time
it will take to build a specific software-based system or
product. The appropriate software is for everyone in the
project to understand and agree on both why and how that
software will be built before the work begins. That’s the
purpose of project planning process cannot be managed in
an effective way. Project planning is an aspect of Project
Management that focuses a lot on Project Integration. The
project plan reflects the current status of all project
activities and is used to monitor and control the project.
The Project Planning tasks ensure that various elements of
the Project are coordinated and therefore guide the project
execution.

Project Planning helps in - Facilitating communication -
Monitoring/measuring the project progress, and - Provides
overall documentation of assumptions/planning decisions.
The Project Planning Phases can be broadly classified as
follows: -Development of the Project Plan - Execution of the
Project Plan - Change Planning is an ongoing effort
throughout the Project Lifecycle.

Fig 1: project life cycle

2 Objectives
The objective of software project planning is to provide

a framework that enables the manager to make reasonable
estimates of resources, cost, and schedule.

These estimates are made within a limited time frame
at the beginning of a software project and should be
updated regularly as the project progresses.

S

http://en.wikipedia.org/wiki/Estimation_in_software_engineering
http://en.wikipedia.org/wiki/Gantt_chart
http://en.wikipedia.org/wiki/Requirements_analysis
http://upload.wikimedia.org/wikipedia/commons/7/74/Project_development_stages.jpg

International Journal of Scientific & Engineering Research, Volume 3, Issue 1, January-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

In addition, estimates should attempt to define best case
and worst case scenarios so that project outcomes can be
bounded.
The planning objective is achieved through a process of
information discovery that leads to reasonable estimates.

3 Useful Estimation Techniques for Software
Projects

3.1 The Importance of Good Estimation

Software projects are typically controlled by four major
variables; time, requirements, resources (people,
infrastructure/materials, and money), and risks.
Unexpected changes in any of these variables will have an
impact on a project. Hence, making good estimates of time
and resources required for a project is crucial.
Underestimating project needs can cause major problems
because there may not be enough time, money,
infrastructure/materials, or people to complete the project.
Overestimating needs can be very expensive for the
organization because a decision may be made to defer the
project because it is too expensive or the project is
approved but other projects are "starved" because there is
less to go around.

In my experience, making estimates of time and resources
required for a project is usually a challenge for most project
teams and project managers. It could be because they do
not have experience doing estimates, they are unfamiliar
with the technology being used or the business domain,
requirements are unclear, there are dependencies on work
being done by others, and so on. These can result in a
situation akin to analysis paralysis as the team delays
providing any estimates while they try to get a good handle
on the requirements, dependencies, and issues.
Alternatively, we will produce estimates that are usually
highly optimistic as we have ignored items that need to be
dealt with. How does one handle situations such as these?

3.2 We provide reliable estimates

Programmers often consider estimating to be a black art—
one of the most difficult things they must do. Many
programmers find that they consistently estimate too low.
To counter this problem, they pad their estimates
(multiplying by three is a common approach) but
sometimes even these rough guesses are too low.

Are good estimates possible? Of course! You just need to
focus on your strengths.

3.3 What Works (and Doesn't) in Estimating

Part of the reason estimating is so difficult is that
programmer can rarely predict how they will spend their
time. A task that requires eight hours of uninterrupted
concentration can take two or three days if the programmer
must deal with constant interruptions. It can take even
longer if the programmer works on another task at the
same time.

Part of the secret to good estimates is to predict the effort,
not the calendar time that a project will take. Make your
estimates in terms of ideal engineering days (often called story
points): the number of days a task would take if you focused
entirely on it and experienced no interruptions.

Ideal time alone won't lead to accurate estimates. I've asked
some of the teams I've worked with to measure exactly how
long each task takes them. One team gave me 18 months of
data, and even though we estimated in ideal time, the
estimates were never accurate.

Still, they were consistent. For example, one team always
estimated their stories at about 60% of the time they
actually needed. This may not sound very promising. How
useful can inaccurate estimates are, especially if they don't
correlate to calendar time? Velocity holds the key.

3.4 How to Make Consistent Estimates

There's a secret to estimating. Experts automatically make
consistent estimates1. All you have to do use a consistent
estimating technique. When you estimate, pick a single,
optimistic value. How long will the story take if you
experience no interruptions, can pair with anyone else on
the team, and everything goes well? There's no need to pad
your estimates or provide a probabilistic range with this
approach. Velocity automatically applies the appropriate
amount of padding for short-term estimates and risk
management adds padding for long-term estimates.

There are two corollaries to this secret. First, if you're an
expert but you don't trust your ability to make estimates,
relax. You automatically make good estimates. Just imagine
the work you're going to do and pick the first number that
comes into your head. It won't be right, but it will be
consistent with your other estimates. That's sufficient.

Second, if you're not an expert, the way to make good
estimates is to become an expert. This isn't as hard as it
sounds. An expert is just a beginner with lots of experience.
To become an expert, make a lot of estimates with relatively
short timescales and pay attention to the results. In other
words, follow the XP practices.

International Journal of Scientific & Engineering Research, Volume 3, Issue 1, January-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

4 Useful Estimation Techniques

Before we begin, we need to understand what types of
estimates we can provide. Estimates can be roughly divided
into three types:

 Ballpark or order of magnitude:
Here the estimate is probably an order of magnitude
from the final figure. Ideally, it would fall within
two or three times the actual value.

 Rough estimates:
Here the estimate is closer to the actual value.
Ideally it will be about 50% to 100% off the actual
value.

 Fair estimates:
This is a very good estimate. Ideally it will be about
25% to 50% off the actual value.

Deciding which of these three different estimates you can
provide is crucial. Fair estimates are possible when you are
very familiar with what needs to be done and you have
done it many times before. This sort of estimate is possible
when doing maintenance type work where the fixes are
known, or one is adding well-understood functionality that
has been done before. Rough estimates are possible when
working with well-understood needs and one is familiar
with domain and technology issues. In all other cases, the
best we can hope for before we begin is order of magnitude
estimates. Some may quibble than order of magnitude
estimates are close to no estimate at all! However, they are
very valuable because they give the organization and
project team some idea of what the project is going to need
in terms of time, resources, and money. It is better to know
that something is going to take between two and six
months to do rather than have no idea how much time it
will take. In many cases, we may be able to give more
detailed estimates for some items rather than others. For
example, we may be able to provide a rough estimate of the
infrastructure we need but only an order of magnitude
estimate of the people and time needed.

4.1 Doing an order of magnitude estimate
This is what most of us face when starting off a new project.
New technology, teams unfamiliar with the technology or
domain, or unclear requirements ensure that this will
probably be the best estimate we can provide.

 Break the project down into the different tasks needed.
Try to get as many tasks as possible. A useful way to
break down tasks is to consider typical software
activities such as analysis, design, build, demo, test, fix,
document, deploy, and support and see if they are

required for each task and whether they need to be
broken out into new tasks.

 Evaluate each task on two scales: complexity (high,
medium, low) and size of work (large, medium, and
small). A less complex task may still involve a large
amount of work; for example, loading a database with
information from paper forms may take several weeks.
A very complex task may not involve much actual
work but can still take a lot of time, as in tuning a
database for optimum performance. Complex tasks are
usually hard to split between many people/teams
while large-size, less complex tasks can usually be split
up between many people/teams.

 Tasks effectively fall into one of nine combinations of
complexity and size. For each combination, define an
expected amount of time and resources required. For
example, we could say that low complexity and small-
size tasks will take one week at most, medium
complexity and small-size tasks will take three weeks,
and so on. These weighing factors will differ based on
the team and project and should be reviewed after the
project to help get better values the next time. Add
together all these values for each task to get an estimate
of time and resources required.

Size

Complexity

Low Medium High

Small 1) Tune database

Medium

Large 1)
Load
data

1) Integrate with security
system
2) Create data validation
routines

Fig 2: sample table for doing order of magnitude estimate

4.2 Doing rough and fair estimates
These estimates can be done when you have a good idea of
the tasks to be done and how to do them.

 Those who will do the actual work are the best people
to do these estimates. One then can add up all the
estimates from different people to get the final
estimates.

 Ensure you collect estimates on the three variables of
time, people, and infrastructure/material needs.

International Journal of Scientific & Engineering Research, Volume 3, Issue 1, January-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 Break down tasks to as detailed a level as possible. As
mentioned previously, it can help to consider typical
software activities such as analysis, design, build,
demo, test, fix, document, deploy, and support and see
if they are required for each task. Break tasks down to a
granularity of eighty hours or less.

5 Conclusion

Here the preceding techniques can help one achieve
better estimates. Review estimated needs versus actual
needs after every project. identify what was correct and
what was wrong. This will help you improve the next time.
As with many other activities, experience will help you get
better!

REFERENCES

[1] Software Engineering-A Practitioner’s approach, Roger
S.Pressman (5th edi), 2001, MGH

[2] Software Project Management, Walker Royce, 1998,
Addison Wesley.

[3] McConnell. Steve,” software project Survival
Guide”(very thin but to point)

[4] Lauesen, Soren,” Software Requirements: styles and
Techniques”, good comparative overview of requirements
techniques

[5] Futrell, Shaffer,” Quality Software Project Management”
(extremely thorough and well-written)

[6] Pierre Bourque and Robert Dupuis, ed (2004). Guide to
the Software Engineering Body of Knowledge - 2004
Version. IEEE Computer –1. ISBN 0-7695-2330-7.
http://www.s

[7] Lewis R. Ireland (2006) Project Management. McGraw-
Hill Professional, 2006. ISBN 0-07-147160-X. p.110.

[8] Young-Hoon Kwak (2005). "A brief history of Project
Management". In: The story of managing projects. Elias G.
Carayannis et al. (9 eds), Greenwood Publishing Group,
2005. ISBN 1-56720-506-2

Authors Details

Hi, I am T. Rajani Devi, I have done M.Tech (S.E) from
Kakatiya Institute of Technology & Science, Warangal. I

have worked as Assistant Professor. I have six years of
experience at academic side.

http://www.swebok.org/
http://www.swebok.org/
http://www.swebok.org/
http://en.wikipedia.org/wiki/IEEE_Computer_Society
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-7695-2330-7
http://www.s/
http://en.wikipedia.org/wiki/Special:BookSources/007147160X
http://en.wikipedia.org/wiki/Special:BookSources/1567205062

